Kleene Star
   HOME

TheInfoList



OR:

In
mathematical logic Mathematical logic is the study of formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory. Research in mathematical logic commonly addresses the mathematical properties of formal ...
and
computer science Computer science is the study of computation, automation, and information. Computer science spans theoretical disciplines (such as algorithms, theory of computation, information theory, and automation) to practical disciplines (includin ...
, the Kleene star (or Kleene operator or Kleene closure) is a
unary operation In mathematics, an unary operation is an operation with only one operand, i.e. a single input. This is in contrast to binary operations, which use two operands. An example is any function , where is a set. The function is a unary operation ...
, either on sets of strings or on sets of symbols or characters. In mathematics, it is more commonly known as the free monoid construction. The application of the Kleene star to a set V is written as ''V^*''. It is widely used for
regular expression A regular expression (shortened as regex or regexp; sometimes referred to as rational expression) is a sequence of characters that specifies a search pattern in text. Usually such patterns are used by string-searching algorithms for "find" ...
s, which is the context in which it was introduced by Stephen Kleene to characterize certain
automata An automaton (; plural: automata or automatons) is a relatively self-operating machine, or control mechanism designed to automatically follow a sequence of operations, or respond to predetermined instructions.Automaton – Definition and Mor ...
, where it means "zero or more repetitions". # If V is a set of strings, then ''V^*'' is defined as the smallest superset of V that contains the empty string \varepsilon and is closed under the string concatenation operation. # If V is a set of symbols or characters, then ''V^*'' is the set of all strings over symbols in V, including the empty string \varepsilon. The set ''V^*'' can also be described as the set containing the empty string and all finite-length strings that can be generated by concatenating arbitrary elements of V, allowing the use of the same element multiple times. If V is either the
empty set In mathematics, the empty set is the unique set having no elements; its size or cardinality (count of elements in a set) is zero. Some axiomatic set theories ensure that the empty set exists by including an axiom of empty set, while in oth ...
∅ or the singleton set \, then V^=\; if V is any other
finite set In mathematics, particularly set theory, a finite set is a set that has a finite number of elements. Informally, a finite set is a set which one could in principle count and finish counting. For example, :\ is a finite set with five elements. ...
or countably infinite set, then ''V^*'' is a countably infinite set. As a consequence, each
formal language In logic, mathematics, computer science, and linguistics, a formal language consists of words whose letters are taken from an alphabet and are well-formed according to a specific set of rules. The alphabet of a formal language consists of s ...
over a finite or countably infinite alphabet \Sigma is countable, since it is a subset of the countably infinite set \Sigma^. The operators are used in rewrite rules for
generative grammar Generative grammar, or generativism , is a linguistic theory that regards linguistics as the study of a hypothesised innate grammatical structure. It is a biological or biologistic modification of earlier structuralist theories of linguistic ...
s.


Definition and notation

Given a set V define :V^=\ (the language consisting only of the empty string), :V^=V and define recursively the set :V^=\ for each i>0. If V is a formal language, then V^i, the i-th power of the set V, is a shorthand for the
concatenation In formal language theory and computer programming, string concatenation is the operation of joining character strings end-to-end. For example, the concatenation of "snow" and "ball" is "snowball". In certain formalisations of concatenat ...
of set V with itself i times. That is, ''V^i'' can be understood to be the set of all strings that can be represented as the concatenation of i strings in V. The definition of Kleene star on V is : V^*=\bigcup_V^i = V^0 \cup V^1 \cup V^2 \cup V^3 \cup V^4 \cup \cdots. This means that the Kleene star operator is an idempotent
unary operator In mathematics, an unary operation is an operation with only one operand, i.e. a single input. This is in contrast to binary operations, which use two operands. An example is any function , where is a set. The function is a unary operation ...
: (V^)^=V^ for any set V of strings or characters, as (V^)^=V^ for every i\geq 1.


Kleene plus

In some
formal language In logic, mathematics, computer science, and linguistics, a formal language consists of words whose letters are taken from an alphabet and are well-formed according to a specific set of rules. The alphabet of a formal language consists of s ...
studies, (e.g. AFL theory) a variation on the Kleene star operation called the ''Kleene plus'' is used. The Kleene plus omits the V^ term in the above union. In other words, the Kleene plus on V is :V^+=\bigcup_ V^i = V^1 \cup V^2 \cup V^3 \cup \cdots. or :V^+ = V^*V This equation holds because every element of ''V''+ must either be composed from one element of ''V'' and finitely many non-empty terms in ''V'' or is just an element of ''V'' (where ''V'' itself is retrieved by taking ''V'' concatenated with ε).


Examples

Example of Kleene star applied to set of strings: : * = . Example of Kleene plus applied to set of characters: : + = . Kleene star applied to the same character set: : * = . Example of Kleene star applied to the empty set: :∅* = . Example of Kleene plus applied to the empty set: :∅+ = ∅ ∅* = = ∅, where concatenation is an associative and noncommutative product. Example of Kleene plus and Kleene star applied to the singleton set containing the empty string: :If V=\, then also V^=\ for each i, hence V^=V^=\.


Generalization

Strings form a
monoid In abstract algebra, a branch of mathematics, a monoid is a set equipped with an associative binary operation and an identity element. For example, the nonnegative integers with addition form a monoid, the identity element being 0. Monoids ...
with concatenation as the binary operation and ε the identity element. The Kleene star is defined for any monoid, not just strings. More precisely, let (''M'', ⋅) be a monoid, and ''S'' ⊆ ''M''. Then ''S''* is the smallest submonoid of ''M'' containing ''S''; that is, ''S''* contains the neutral element of ''M'', the set ''S'', and is such that if ''x'',''y'' ∈ ''S''*, then ''x''⋅''y'' ∈ ''S''*. Furthermore, the Kleene star is generalized by including the *-operation (and the union) in the
algebraic structure In mathematics, an algebraic structure consists of a nonempty set ''A'' (called the underlying set, carrier set or domain), a collection of operations on ''A'' (typically binary operations such as addition and multiplication), and a finite set ...
itself by the notion of complete star semiring.


See also

*
Wildcard character In software, a wildcard character is a kind of placeholder represented by a single character, such as an asterisk (), which can be interpreted as a number of literal characters or an empty string. It is often used in file searches so the full n ...
* Glob (programming)


References


Further reading

*{{cite book , last1=Hopcroft , first1=John E. , author-link1=John Hopcroft , last2=Ullman , first2=Jeffrey D. , author-link2=Jeffrey Ullman , date=1979 , title=Introduction to Automata Theory, Languages, and Computation , title-link=Introduction to Automata Theory, Languages, and Computation , edition=1st , publisher=
Addison-Wesley Addison-Wesley is an American publisher of textbooks and computer literature. It is an imprint of Pearson PLC, a global publishing and education company. In addition to publishing books, Addison-Wesley also distributes its technical titles throug ...
Formal languages Grammar Natural language processing